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Abstract—TransUNet is a hybrid architecture that combines a
transformer-based encoder with a CNN-based UNet. Originally
introduced for semantic segmentation of medical images, we show
in our work that TransUNet can be successfully applied to urban
scenery datasets commonly used for developing autonomous
driving systems. We also explore the performance characteristics
of training on multi-domain data from the real world and a
simulator, and show that using simulated images to augment a
live dataset can improve segmentation performance. Code will
be made available at https://github.com/weiyuen.

Index Terms—Semantic Segmentation, Domain Adaptation,
Vision Transformer, Urban Scenery, Autonomous Driving

I. INTRODUCTION

For decades, autonomous driving has been a prominent goal
for the AI community. While this goal seemed unattainable
not too long ago, the deep learning breakthrough over the last
decade has brought us closer than ever and led to renewed
optimism in the field. While multiple challenges still remain to
be solved to achieve fully autonomous vehicles, deep learning
has revolutionized the field of computer vision, and resulted
in the creation of models capable of performing tasks such as
semantic segmentation at performance levels that would have
been unthinkable of prior to deep learning.

However, as inductive systems, deep learning models re-
quire large amounts of data to perform well. This is especially
true for autonomous driving models, where mistakes can be
lethal, and as a result robust performance is expected even on
out of distribution data. This means building datasets that are
sufficiently large to include long-tail occurrences, which can
be costly.

An emerging solution to this problem is to use simulated
data to augment live training data. As part of the Smoky
Mountain Data Challenge 2021 [1], we were provided with
such a dataset, consisting of a mixture of live images sourced
from the Cityscapes dataset [2] and simulated images obtained
from the CARLA [3] driving simulator.

II. RELATED WORK

A. Transformers for Semantic Segmentation

Vision Transformers (ViTs) were first introduced in 2020 by
Dosovitskiy et al. [4]. Their work allowed for the transformer
architecture [5] to work on visual inputs by representing input
images as a sequence of patches. ViTs have since been used

on a variety of other computer vision tasks, a field where
Convolutional Neural Networks (CNNs) have traditionally
dominated.

A variety of transformer-based semantic segmentation ar-
chitectures have been proposed in 2021. Zheng et al. [6] pro-
posed SETR (Segmentation Transformer), a ViT-like encoder-
decoder architecture for semantic segmentation. SETR did
not utilize any convolutions or downsampling, and achieved
competitive results with leading CNN-based architectures.
Variations of pure transformer segmentation networks have
also been proposed, such as the Segmenter [7] and TrSeg [8].

Next, Chen et al. [9] proposed TransUNet, a hybrid ar-
chitecture that combines the CNN-based U-Net with a ViT-
based encoder. The classic U-Net [10] architecture contains
skip connections between the encoder and decoder segments
of the network, allowing for the recovery of fine details during
reconstruction. However, while CNNs perform well at detect-
ing local features, they are unable to reliably encode long-
range dependencies. The addition of a transformer encoder
alleviates this issue due to its use of self-attention. The authors
showed that a transformer-UNet hybrid was able to outperform
pure transformer-based architectures due to the U-Net’s ability
to recover low-level details. Our work in this paper will be
based on the TransUNet architecture, and while the model
was originally developed for medical image segmentation, we
will show that it performs strongly on urban scenery datasets
as well.

Finally, the Wide-Context Network (WiCoNet) in [11]
builds on TransUNet by incorporating multiple views of the in-
put image. Their work involved high-resolution remote sensing
images, and the model received as input a downsampled global
view of the image, as well as a cropped local view. While
images from urban scenery datasets are often significantly
lower in resolution, a potential direction for future work would
be to determine if the method provides any benefits in this
area.

III. METHODOLOGY

A. Dataset

The Smoky Mountains Data Challenge 2021 Challenge 3 [1]
dataset consists of 5600 images, along with a segmentation
map for each image. Simulated images from the CARLA
simulator make up 4900 images in the dataset, while the
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Function Argument
Fliplr 0.5

MultiplyBrightness (0.5, 1.5)
MultiplySaturation (0.5, 1.5)

ChangeColorTemperature (3200, 22000)
MultiplyHue (0.7, 1.3)
LogContrast (0.7, 1.3)

Sharpen (0.0, 0.3)
GaussianBlur (0.0, 0.3)

TABLE I: imgaug functions along with the arguments used.

remaining 700 images come from the Cityscapes dataset
(representing real world data). The images generated from
CARLA span 7 different categories of weather and lighting
conditions. Note that this results in a 7:1 ratio of simulated to
live data in the dataset.

Since the number of classes and label values differed
between the provided segmentation maps for CARLA and
Cityscape images, we first had to map all label values to a
standardized format provided by the challenge sponsors, which
resulted in a total of 15 classes.

To act as a regularizer and to improve model performance,
we perform image augmentation during training, with param-
eters shown in Table I. All augmentations were implemented
using the imgaug library. We also resized all images to
224x224 in order to suit the pre-trained model’s requirements.

B. TransUNet

In their original paper, Chen et al. [9] test multiple variants
of their TransUNet architecture, varying parameters such as the
number of skip connections between the encoder and decoder,
and the patch size of the transformer encoder.

For our experiments, we use the TransUNet variant that
achieved the best results in [9]. This variant uses a ResNet-
50 [12] CNN encoder with 3 skip connections, and a vision
transformer with a patch size of 16. Both the CNN and vision
transformer are pre-trained on ImageNet21k [13].

Our experiments utilize code made available by the orig-
inal authors on GitHub [14]. While we have adapted and
streamlined their code in various places to suit our dataset
and studies, the semantics remain identical.

We use SGD as the optimizer and the average of the
categorical cross-entropy loss and DICE loss [15] as our loss
function. Unless otherwise specified, all models were trained
for 200 epochs at a learning rate of 0.015 using a batch size
of 16.

C. Evaluation Metrics

Throughout our experiments, we use the weighted mean IoU
(wMIoU) as the primary metric to evaluate our models. This
metric is commonly used to evaluate semantic segmentation
models and represents the mean of the intersection over union
across all classes, weighted by the size of the class. However,
we also include the mean IoU (mIoU), as well as the individual
IoUs for each class in our results to help paint a more
representative picture of each model’s performance.

IV. EXPERIMENTS & RESULTS

To study the effects of training on different combinations of
simulated and live data on model performance, we partition
our training/validation/test sets in three different ways as
shown in Table II, and discuss the results of each in the
subsections that follow.

A. Training on Simulated & Live Images

Table III shows the quantitative results obtained from train-
ing on a mixture of simulated and live images. We show the
mIoU and wMIoU across the whole test set (Table IIIa), as
well as the disaggregated results for the simulated and live
images in the test set (Tables IIIb & IIIc). Unfortunately,
due to the unique nature and size of the dataset provided for
this challenge, direct comparison of quantitative results with
existing methods is not possible.

Fig. 1: Output sample of a simulated image (0.908 wMIoU).

Fig. 2: Output sample of a live image (0.750 wMIoU).

At first glance, the quantitative results show vastly better
performance on simulated images (Table IIIb) relative to
live images (Table IIIc). However, while it is clear that the
model performs better on simulated images, we believe that
the practical results are closer than the quantitative figures
indicate, for reasons we will hence describe.

Qualitatively, we note that the ground truth labels on the
live images are often more inconsistent than their simulated
counterparts, likely due to the increased ambiguity of objects
in live scenes. There are often multiple valid labels for a
given object, and we note that quite often, the model’s missed
predictions are arguably valid.

To help illustrate this, Figures 1 & 2 show a simulated
and live sample from the test set respectively. These images
were chosen as their wMIoU values are close to the mean
wMIoU values of their respective disaggregated test sets. Note
that a significant cause of the live image’s lower score is the
‘misclassification’ in the upper-right corner, as well as in the
gap between the vegetation. The model classifies these regions
as buildings (gray), whereas the ground truth labels them as
part of the ‘Other’ class (black).



Section Train (85%) Validation (5%) Test (10%)
IV-A Sim + Live Sim + Live Sim + Live
IV-B Sim Sim Live
IV-C Live Live Live

TABLE II: Training, validation, and test set partitions.
(Sim=CARLA, Live=Cityscapes)

Class Value Class Value Class Value
Building 0.872 Wall 0.778 Truck 0.042

Fence 0.692 Road 0.977 Bus 0.082
Pole 0.427 Traffic Light 0.408 Train 0.433

Sidewalk 0.873 Person 0.531 Bicycle 0.485
Vegetation 0.781 Car 0.845 Other 0.860

mIoU: 0.606
wMIoU: 0.884

(a) Results on full test set.
Class Value Class Value Class Value

Building 0.897 Wall 0.815 Truck 0.002
Fence 0.731 Road 0.983 Bus 0.000
Pole 0.450 Traffic Light 0.473 Train 0.000

Sidewalk 0.906 Person 0.000 Bicycle 0.002
Vegetation 0.779 Car 0.841 Other 0.879

mIoU: 0.647
wMIoU: 0.900

(b) Disaggregated results for simulated images.
Class Value Class Value Class Value

Building 0.770 Wall 0.111 Truck 0.051
Fence 0.267 Road 0.916 Bus 0.424
Pole 0.207 Traffic Light 0.319 Train 0.785

Sidewalk 0.622 Person 0.508 Bicycle 0.422
Vegetation 0.774 Car 0.846 Other 0.604

mIoU 0.508
wMIoU 0.756

(c) Disaggregated results for live images.

TABLE III: Results from training on simulated and live images.

A close inspection of the image indicates that the upper-
right region is a pedestrian bridge, and that the gap between
the vegetation is a wall of some form, showing that the model’s
predictions are very sensible (and arguably more valid than
ground truth). Empirically, misclassifications like these happen
much more often in live images than in simulated ones (see
also Figure 4 from section IV-C), which likely exaggerates the
gap seen in the quantitative results.

As a side note, since the challenge’s withheld test set
includes a combination of both simulated and live images,
this subsection’s training method is used for our submission,
as we found it to produce the best performing model overall.

B. Training on Simulated Images Only

To determine the extent of the model’s ability to generalize
from the simulated domain to the live domain, we next train
the model on simulated images only, and perform evaluation
on live images. Results are shown in Table IV, along with
results from a sample image in Figure 3.

These results show that some learning and generalization
across domains does occur when training on purely simulated
data, particularly in the larger classes such as ‘Building’,
‘Vegetation’, and ‘Road’, and that the high-level structure of
scenes is usually captured well. However, the significantly
worse quantitative and qualitative performance overall shows

Fig. 3: Output sample of a live image (0.471 wMIoU).

that the addition of even a small number of live images in the
training set goes a long way to improving performance.

C. Training on Live Images Only

Finally, to study if the addition of simulated images affects
performance on live images, we train and test a model on only
the 700 live images in the provided dataset. Results are shown
in Table V, with a sample output shown in Figure 4.

By comparing the results here to the disaggregated results
of live images in Section IV-A, we see that the removal of
simulated images from the training set results in a minor
reduction to wMIoU on live images (0.756 to 0.748). mIoU
sees a more significant reduction (0.508 to 0.430), largely
driven by large decreases to the IoUs of the bus and train
classes. However, these two classes constitute a miniscule



Class Value Class Value Class Value
Building 0.549 Wall 0.099 Truck 0.000

Fence 0.022 Road 0.730 Bus 0.000
Pole 0.074 Traffic Light 0.035 Train 0.000

Sidewalk 0.397 Person 0.000 Bicycle 0.000
Vegetation 0.583 Car 0.282 Other 0.256

mIoU: 0.233
wMIoU: 0.500

TABLE IV: Results from training on simulated images and testing on live images.

Class Value Class Value Class Value
Building 0.74 Wall 0.323 Truck 0.005

Fence 0.095 Road 0.918 Bus 0.002
Pole 0.163 Traffic Light 0.239 Train 0.278

Sidewalk 0.648 Person 0.387 Bicycle 0.441
Vegetation 0.820 Car 0.801 Other 0.588

mIoU: 0.430
wMIoU: 0.748

TABLE V: Results from training and testing on live images.

Fig. 4: Output sample of a live image (0.660 wMIoU).

portion of the overall dataset, meaning that the reduction in
mIoU is not statistically significant, and that the wMIoU is
more representative of the difference in performance.

Our results show that the use of simulated images to
augment live images offers slight benefits to performance for
this particular dataset. We posit that a simple way to increase
these benefits would be to increase the alignment between
ground truth labels for simulated and live images. In this
instance, all vehicles in the simulated images were labelled
as ‘Car’, whereas they were also subclassed into ‘Truck’ and
‘Bus’ in the live images. Apart from improving generaliza-
tion between domains, we hypothesize that improved label
alignment will also partially alleviate the ambiguity issues
discussed in Section IV-A.

V. CONCLUSION

Through our experiments, we have shown that the Tran-
sUNet architecture can be successfully applied on an urban
scenery dataset to perform semantic segmentation. In addition,
we have shown that while some learning and generalization
from the simulated to real domain does occur (Section IV-B),
the best results are obtained from training on a combination
of simulated and real data (Section IV-A), which validates the
use of simulated images for training when limited live images
are available. We have also discussed issues related to label
ambiguity, and suggested potential directions for future work,
namely pertaining to label consistency/alignment.
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